Syntheses of Some New 4-Amino-5-(Nmethyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones and Their Derivatives

Guofeng Jia* and Zhengming Li

Elemento-Organic Chemistry Institute, Nankai University, Tianjin 300071, P.R. China

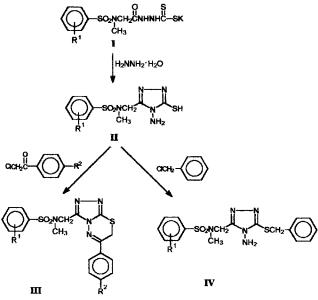
Received 5 February 1996

ABSTRACT

The cyclization of 4-amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones II, synthesized by the Reid and Heindel approach, with **a**-chloroacetophenone yields 7H-6-aryl-3-(N-methyl-arylsulfonamido)methyl-s-triazolo[3,4-b][1,3,4]-thiazines III. Novel compounds II also react with benzyl chloride to afford 4-amino-3-benzylthio-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole IV.© 1996 John Wiley & Sons, Inc.

INTRODUCTION

4-Amino-5-aryl-1,2,4-triazole-3-thiones and their derivatives have been found to exhibit a wide range of biological activities [1-6]. In continuation of our interest in the synthesis and herbicidal activity of sulfonylureas and heterocyclic sulfonamides [7-9], we wish to describe here the synthesis of some new 4amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4triazole-3-thiones II and the reactions of each II with benzyl chloride and *a*-chloroacetophenone (Scheme 1). The structural optimization and the biological activities of these compounds will be the subject of our further work.


RESULTS AND DISCUSSION

A group of six new 4-amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones II were prepared by hydrazinolysis of the corresponding potassium dithiocarbazates I with excess hydrazine hydrate following the method of Reid and Heindel [10]. The structures of compounds II were confirmed from elemental analyses (Table 1) and spectral data (Table 2). Thus, their NMR spectra showed a singlet at δ 4.56–5.52 (2H, NH₂) and a singlet at 13.44–13.80 (1H, SH, or HNCS) reflecting the thiol-thione tautomeric forms [5,10,11]. Their IR spectra showed stretching band in the regions 3230-3280 cm⁻¹ and 1624–1631 cm⁻¹ attributable to NH_2 and C = N, respectively. The strong stretching band in the 1335-1362 cm⁻¹ and 1151-1160 cm⁻¹ indicates the presence of asymmetric and symmetric forms of -SO,-.

Reaction with a-Chloroacetophenone

Treatment of the triazoles II with *a*-chloroacetophenone in refluxing absolute ethanol followed by neutralization with sodium bicarbonate afforded 7H-6-aryl-3-(N-methyl-arylsulfonamido)melthyl-striazolo[3,4-b][1,3,4]thiadiazines III. The analytical (Table 3) and spectra data (Table 4) were in accordance with the structures assigned. The IR spectra of compounds III were devoid of the characteristic stretching frequencies of the NH₂ and C = O groups. The NMR spectra showed a singlet at δ 4.52–4.86 (2H, CH₂) and lacked the signals for both SH and NH₂ protons. These data indicated that cyclization

^{*}To whom correspondence should be addressed.

R¹=H, 2-CH₃, 4-CH₃, 2-Cl, 3-Cl, 4-Cl; R²=H, Cl.

SCHEME 1

of triazoles II with *a*-chloroacetone involving both functional groups had taken place.

Reaction with Benzyl Chloride

It has been reported that the reactions of 4-amino-5-aryl-1,2,4-triazole-3-thiones with methyl bromoacetate and acid chlorides afforded S- and N-substituted products, respectively [5]. Thus, the NMR spectra of the compounds obtained by treating 4amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4triazole-3-thiones II with benzyl chloride, revealed a singlet at δ 4.26–4.60 for CH₂ protons and were devoid of the signals for SH protons, indicating that substitution on SH had taken place. Tables 3 and 4 list the analytical and spectral data of compounds III and IV.

EXPERIMENTAL

Instruments

All melting points were determined on a micromelting-point apparatus and are uncorrected. Elemental analysis data were obtained by use of a Yanaco CHN Corder MR-3 apparatus. Infrared spectra were recorded with a Shimadzo-IR 435 infrared spectrophotometer. 'H-NMR spectra were recorded on either a JEOL-FX-90Q (90 MHz) or a Bruker AC-P200 (200 MHz) spectrometer using tetramethylsilane (TMS) as an internal standard.

4-Amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones II

Following the procedure of Reid and Heindel [10], a mixture of each potassium dithiocarbazate I (0.04 mol), hydrazine hydrate (85%, 0.08 mol), and 14 mL of water was refluxed for 2.5 hours. The color of each reaction mixture changed to green slowly. After a rapid filtration and dilution with 20 mL of water, each reaction mixture was acidified with concentrated hydrochloric acid. The white precipitate that had formed in each case was filtered off, washed three times with 80 mL of cold water, and crystal-lized from ethanol (Table 1).

7H-6-Aryl-3-(N-methyl-arylsulfonamido)methyls-triazolo[3,4-b][1,3,4]-thiadiazines III

a-Chloroacetophenone or a,4-dichloroacetophenone (0.003 mol) was added portionwise to a stirred so-

Compd.	R'	Yield mp (°C)			Analysis (Calcd./Found) %			
		(%)		Formula	С	Н	N	
11,	Н	66	156.4–157.8	$C_{10H_{13}N_5O_2S_2}$	40.12	4.38	23.39	
н	2-CH ₃	68	118.0–120.0	C ₁₁ H ₁₅ N₅O₂S₂	40.23 42.16	4.18 4.82	23.02 22.35	
II ₂	2-0 ₁₃	00	110.0-120.0	U ₁₁ Π ₁₅ Ν ₅ U ₂ U ₂	42.05	5.02	22.55	
II 3	4-CH₃	84	165.0–167.0	$C_{11}H_{15}N_5O_2S_2$	42.16	4.82	22.35	
°	·				42.15	4.84	22.42	
ll₄	2-CI	76	138.5–140.5	$C_{10}H_{12}CIN_5O_2S_2$	36.09	3.63	21.04	
-					36.30	3.62	21.03	
11 ₅	3-CI	65	183.0–185.0	$C_{10}H_{12}CIN_5O_2S_2$	36.09	3.63	21.04	
5					36.26	3.32	21.22	
11 ₆	4-Cl	78	195.2-196.4	$C_{10}H_{12}CIN_5O_2S_2$	36.09	3.63	21.04	
•					36.27	3.58	21.19	

TABLE 1 Physical Constants and Analytical Data of 4-Amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones II

		γ	(Potass	sium bromide,) <i>cm</i> -1			
Compd.	R'	N-H	C=N	<i>– SO₂-(as)</i>	- SO ₂ -(s)	δ (DMSO-d _e) ppm		
						2.80 (s, 3H, CH ₃), 4.36 (s, 2H, CH ₂), 4.96 (s, 2H, NH ₂), 7.5–8.0 (m,		
II ₁	н	3280	1624	1335	1151	5H, Ph–H), 13.68 (s, 1H, SH)		
						2.44 (s, 3H, Ph-CH ₃), 2.80 (s, 3H, CH ₃), 4.54 (s, 2H, CH ₂), 5.44 (s,		
II ₂	2-CH₃	3235	1624	1340	1156	2H, NH ₂), 7.4–8.0 (m, 4H, Ph–H), 13.80 (s, 1H, SH)		
						2.48 (s, 3H, Ph-CH ₃), 2.80 (s, 3H, CH ₃), 4.32 (s, 2H, CH ₂), 4.56 (s,		
						$2H$, NH_2), 7.44 (d, $2H$, $J = 7.2$ Hz, $Ph-H$), 7.76 (d, $2H$, $Ph-H$), 13.44		
II ₃	4-CH₃	3269	1625	1362	1158	(s, 1H, SH)		
						2.96 (s, 3H, CH ₃), 4.64 (s, 2H, CH ₂), 5.12 (s, 2H, NH ₂), 7.4-8.3 (m,		
ll ₄	2-CI	3230	1631	1350	1162	4H, Ph–H), 13.76 (s, 1H, SH)		
						2.82 (s, 3H, CH ₃), 4.40 (s, 2H, CH ₂), 5.52 (s, 2H, NH ₂), 7.6-7.8 (m,		
II ₅	3-CI	3268	1612	1345	1160	4H, Ph–H), 13.62 (s, 1H, SH)		
						2.84 (s, 3H, CH ₃), 4.40 (s, 2H, CH ₂), 4.88 (s, 2H, NH ₂), 7.6-8.0 (m,		
ll _e	4-CI	3270	1627	1362	1160	4H, Ph–H), 13.72 (s, 1H, SH)		

TABLE 2 Spectral Data of 4-Amino-5-(N-methyl-arylsulfonamido)methyl-1,2,4-triazole-3-thiones II

TABLE 3 Physical Constants and Analytical Data of Compounds III and IV

Compd.			Yield			Analysis (Calcd./Found) %		
	R'	R ²	(%)	mp (°C)	Formula	С	Н	N
ŧII,	н	н	99	173.5-175.0	$C_{18}H_{17}N_5O_2S_2$	54.12	4.92	17.53
						54.35	4.45	17.60
111 ₂	н	CI	99	194.0–195.5	$C_{18}H_{16}CIN_{5}O_{2}S_{2}$	49.82	3.72	16.14
						50.00	3.80	16.10
111 ₃	2-CH ₃	Н	8 9	163.0–165.0	$C_{19}H_{19}N_5O_2S_2$	55.19	4.63	16.94
						55.52	4.96	16.85
III ₄	4-CH₃	н	73	198.0-200.0	C ₁₉ H ₁₉ N₅O₂S₂	55.19	4.63	16. 9 4
						55.35	4.61	17.20
III ₅	4-CH₃	CI	82	184.0186.0	$C_{19}H_{18}CIN_5O_2S_2$	50.94	4.50	15.63
						51.03	4.11	15.75
III ₆	2-CI	н	92	177.0–178.4	C ₁₈ H ₁₆ CIN ₅ O ₂ S ₂	49.82	3.72	16.14
						50.31	3.66	16.04
III ₇	3-CI	CI	72	199.5-200.5	$C_{18}H_{15}Cl_2N_5O_2S_2$	46.16	3.23	14.95
						46.26	3.11	14.94
III ₈	4-CI	н	76	175.5–176.5	C ₁₈ H ₁₆ CIN₅O₂S₂	49.94	3.72	16.18
						49.88	3.77	16.02
III ^a	4-Cl	CI	95	200.0-201.6	$C_{18}H_{15}Cl_2N_5O_2S_2$	46.16	3.23	14.95
						46.33	3.23	14.94
IV ₁	2-CH₃	н	66	126.0-127.5	$C_{18}H_{21}N_5O_2S_2$	53.58	5.24	17.36
						53.57	5.37	17.35
IV ₂	4-CH₃	н	74	160.0–161.5	$C_{18}H_{21}N_5O_2S_2$	53.58	5.24	17.36
						53.54	5.27	17.19
IV ₃	2-CI	н	86	123.0-123.5	C ₁₇ H ₁₈ CIN₅O₂S₂	48.16	4.28	16.52
						48.13	4.33	16.30
IV₄	3-CI	Н	88	142.0-143.2	C ₁₇ H ₁₈ CIN ₅ O ₂ S ₂	48.16	4.28	16.52
						48.27	4.19	16.26
IV ₅	4-Cl	Н	81	142.0-143.0	$C_{17}H_{18}CIN_5O_2S_2$	48.16	4.28	16.52
						48.38	4.38	16.48

TABLE 4	Spectral	Data of	Compounds III	and IV
---------	----------	---------	---------------	--------

		γ (Potassium bromide) cm ⁻¹					
Compd.	R'	R²	N–H	C=N	<i>– SO₂-(as)</i>	- SO ₂ -(s)	δ (CDCl ₃)
							2.81 (s, 3H, CH ₃), 3.96 (s, 2H, CH ₂), 4.59 (s, 2H, CH ₂), 7.4
III 1	н	н		1600	1353	1162	8.0 (m, 10H, Ph–H)
III ₂	н	CI		1585	1345	1153	2.76 (s, 3H, CH ₃), 4.20 (s, 2H, CH ₂), 4.52 (s, 2H, CH ₂), 7.4- 8.1 (m, 9H, Ph–H)
2		-					2.39 (s, 3H, Ph–CH ₃), 2.78(s, 3H, CH ₃), 3.92 (s, 2H, CH ₂), 4.57
III ₃	2-CH₃	н		1593	1330	1156	(s, 2H, CH ₂), 7.2–7.7 (m, 9H, Ph–H)
							2.39 (s, 3H, Ph-CH ₃), 2.78 (s, 3H, CH ₃), 3.97 (s, 2H, CH ₂)
		ы		1500	1050	1150	4.57 (s, 2H, CH_2), 7.5–8.0 (m, 5H, Ph–H), 7.25 (d, 2H, $J =$
III₄	4-CH₃	Н		1593	1250	1158	8.2 Hz, Ph–H), 7.66 (d, 2H, Ph–H)
							2.41 (s, 3H, Ph–CH ₃), 2.75 (s, 3H, CH ₃), 3.95 (s, 2H, CH ₂) 4.54 (s, 2H, CH ₂), 7.29 (d, 2H, $J = 8.2$ Hz, Ph–H), 7.66 (d
							2H, Ph-H), 7.47 (d, 2H, $J = 8.7$ Hz, Ph-H), 7.96 (d, 2H, Ph-
HI ₅	4-CH ₃	CI		1588	1349	1157	H)
	0						2.91 (s, 3H, CH ₃), 3.95 (s, 2H, CH ₂), 4.86 (s, 2H, CH ₂), 7.4-
III _e	2-Cl	н		1570	1324	1156	8.0 (m, 9H, Ph–H)
		.					2.87 (s, 3H, CH ₃), 3.99 (s, 2H, CH ₂), 4.60 (s, 2H, CH ₂), 7.4-
III ₇	3-CI	CI		1588	1351	1164	8.0 (m, 8H, Ph–H)
							2.84 (s, 3H, CH ₃), 3.97 (s, 2H, CH ₂), 4.62 (s, 2H, CH ₂), 7.41 (d, 2H, I_{-} = 0.6 Hz, Pb, H), 7.72 (d, 2H, Pb, H), 7.6 (d, 2H, CH ₂), 7.41
HI _a	4-Cl	н		1580	1350	1161	(d, 2H, <i>J</i> = 8.6 Hz, Ph–H), 7.72 (d, 2H, Ph–H), 7.5–8.0 (m 5H, Ph–H)
		••		1000	1000		2.80 (s, 3H, CH ₃), 3.96 (s, 2H, CH ₂), 4.59 (s, 2H, CH ₂), 7.46
							(d, 2H, J = 8.6 Hz, Ph-H), 7.72 (d 2H, Ph-H), 7.49 (d, 2H, d)
III,	4-Cl	CI		1582	1350	1159	= 8.8 Hz, Ph–H), 7.93 (d, 2H, Ph–H)
	_						2.41 (s, 3H, Ph–CH ₃), 2.65 (s, 3H, CH ₃), (s, 2H, CH ₂), 4.46 (s
IV ₁	2-CH₃	н	3228	1595	1336	1154	2H, CH ₂), 4.67 (s, 2H, NH ₂), 7.2–7.8 (m, 9H, Ph–H)
							2.42 (s, 3H, Ph–CH ₃), 2.67 (s, 3H, CH ₃), 4.26 (s, 2H, CH ₂)
IV ₂	4-CH _a	н	3280	1594	1340	1152	4.33 (s, 2H, CH ₂), 4.63 (s, 2H, NH ₂), 7.2–7.3 (m, 5H, Ph– H) 7.31 (d, 2H, $J = 8.4$ Hz, Ph–H), 7.63 (d, 2H, Ph–H)
• • 2	-+-On ₃	п	3200	1094	1040	1152	7.51 (d, 2π , $3 = 8.4$ Hz, $Pn-\pi$), 7.63 (d, 2π , $Pn-\pi$) 2.78 (s, 3H, CH ₃), 4.32 (s, 2H, CH ₂), 4.60 (s, 2H, CH ₂), 4.60
IV ₃	2-CI	н	3260	1621	1335	1159	(s, 2H, NH ₂), 7.2–8.0 (m, 9H, Ph–H)
3		••					2.76 (s, 3H, CH ₃), 4.35 (s, 2H, CH ₂), 4.40 (s, 2H, CH ₂), 5.81
IV₄	3-CI	н	3268	1626	1336	1157	(s, 2H, NH ₂), 7.2–7.8 (m, 9H, Ph–H)
•							2.68 (s, 3H, CH ₃), 4.28 (s, 2H, CH ₂), 4.35 (s, 2H, CH ₂), 4.70
IV ₅	4-Cl	н	3260	1632	1334	1153	(s, 2H, NH ₂), 7.2–7.8 (m, 9H, Ph–H)

lution of each triazole II (0.003 mol) in 15 mL of absolute ethanol. Each mixture was then refluxed for 6 hours, cooled to room temperature, and neutralized with aqueous sodium bicarbonate solution. The solid product obtained in each case was crystallized from ethanol (Table 3).

4-Amino-3-benzylthio-5-(N-methylarylsulfonamido)methyl-1,2,4-triazoles IV

Benzyl chloride (0.002 mol) dissolved in 20 mL of absolute ethanol was mixed with each triazole II (0.002 mol) and heated for 8 hours, and each mixture was cooled to room temperature. Neutralization with sodium bicarbonate in each case gave a precipitate that was filtered off, washed with 20 mL of cold water, and crystallized from the ethanol-water mixture (Table 3).

ACKNOWLEDGMENT

This project was supported by the National Natural Science Foundation of China.

REFERENCES

- [1] M. Kuranari, H. Takeucki, Japanese Patent, 21 420 (1965).
- [2] W. L. Albrecht, W. D. Jones, U.S. Patent, 3 954 981 (1976).
- [3] W. L. Albrecht, W. D. Jones, U.S. Patent, 4 230 715 (1980).
- [4] S. Singh, L. D. Yadav, H. Singh, Bokin Bobai., 8, 1980, 385; Chem. Abstr., 94, 1981, 103250b.
- [5] N. F. Eweiss, A. A. Bahajaj, E. A. Elsherbin, J. Heterocyclic Chem., 23, 1986, 1451.
- [6] Z. Y. Zhang, M. Li, L. Zhao, et al., Chem. J. Chinese Univ., 14, 1993, 512.
- [7] Z. M. Li, G. F. Jia, L. X. Wang, et al., Chem. J. Chinese Univ., 15, 1994, 693.

- [8] Z. M. Li, G. F. Jia, L. X. Wang, et al., Chinese Patent, 93 1 01976.1 (1995).
- [9] Z. M. Li, G. F. Jia, L. X. Wang, et al., Acta Physico-Chimica Sinica, 11, 1995, 773.
- [10] J. R. Reid, N. D. Heindel, J. Heterocyclic Chem., 13, 1976, 925.
 [11] N. D. Heindel, J. R. Reid, J. Org. Chem., 45, 1980,
- 2479.